Hyperbolic Function Formula
Trigonometric functions are similar to Hyperbolic functions. Â Hyperbolic functions also can be seen in many linear differential equations, for example in the cubic equations, the calculation of angles and distances in hyperbolic geometry are done through this formula. This has importance in electromagnetic theory, heat transfer, and special relativity.
The basic hyperbolic formulas are sinh, cosh, tanh.
\[\large e^{x}=  cosh\;x + sinh\;x\]
\[\large sinh\;x=\frac{e^{x}-e^{-x}}{2}\]
\[\large cosh\;x=\frac{e^{x}+e^{-x}}{2}\]
\[\large tanh\;x= \frac{\large sinh\;x}{\large cosh\;x} =\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\]
RELATIONSHIPS AMONG HYPERBOLIC FUNCTION
Following is the relationship among hyperbolic function :
\[\large tanh\;x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\]
\[\large coth\;x=\frac{1}{tanh\;x}= \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}\]
\[\large sech\;x=\frac{1}{cosh\;x}= \frac{2}{e^{x}+e^{-x}}\]
\[\large csch\;x=\frac{1}{sinh\;x}= \frac{2}{e^{x}-e^{-x}}\]
Solved Examples
Question: Derive addition identities for sinh (x + y) and cos h(x + y)
In the identity:Â
Solution:
Since,
Dividing numerator and denominator byÂ
Comments