JEE Advanced Syllabus

JEE Advanced syllabus for Physics, Chemistry and Maths is mainly declared by the examination authority. The syllabus of JEE Advanced is usually vast and students are advised to start their preparations as early as possible. However, before starting JEE preparations, it is important to go through the JEE Advanced syllabus and have a proper understanding of all the concepts included in the curriculum. This will help the candidates to allocate more time for preparing concepts that demand extra attention.

JEE Advanced Syllabus

The recent JEE Advanced syllabus is focused more on the applications of concepts, therefore, IIT aspirants need to develop a suitable strategy and further set an appropriate time goal to complete the whole syllabus before the exams. However, preparation for JEE Advanced is quite demanding and if we consider the fact, it is listed among the toughest competitive exams in the world.

With such a reputation, it is every candidates’ duty to utilize the majority of their preparation time in practising and strengthening concepts specified in the latest syllabus of JEE Advanced. Students are required to be more logical, dedicated, and hardworking. While the syllabus is kept the same every year, in JEE Advanced 2022 syllabus, the topic-wise weightage given for each unit was changed. Apart from that, there were no major changes as such.

Download JEE Advanced Syllabus PDFs

JEE candidates can also download the JEE Advanced syllabus PDFs below.

JEE Advanced Physics Syllabus PDF
JEE Advanced Chemistry Syllabus PDF
JEE Advanced Maths Syllabus PDF

JEE Advanced 2023 Syllabus

The exam authorities have now revised the syllabus for the JEE Advanced 2023 exam. You can access the 2023 PDF below.

JEE Advanced 2023 Syllabus PDF Download

JEE Advanced 2022 Syllabus

Meanwhile, JEE Advanced 2022 syllabus has been released by IIT Bombay on the official website. However, to make things easier candidates can directly view the detailed JEE Advanced syllabus for all three subjects, Physics, Chemistry and Maths here. The syllabus copies are also available in a downloadable PDF format.

Students will find the subject wise list of all the topics included in the syllabus of JEE Advanced below. The syllabus sets a baseline for all IIT aspirants to prepare what all is necessary for the exam. They should keep a copy of the syllabus and study accordingly. Students are advised to prepare each subject with the same intensity in order to ensure a meritorious position in the examination. JEE Advanced 2022 syllabus comprises of topics taught in classes 11 and 12 Physics, Chemistry and Mathematics.

JEE Advanced Syllabus and Topics For Physics

General:
Units and dimensions, dimensional analysis; least count, significant figures; Methods of

measurement and error analysis for physical quantities pertaining to the following

experiments: Experiments based on using Vernier calipers and screw gauge

(micrometer), Determination of g using simple pendulum, Young’s modulus by Searle’s

method, Specific heat of a liquid using calorimeter, focal length of a concave mirror and

a convex lens using u-v method, Speed of sound using resonance column, Verification of

Ohm’s law using voltmeter and ammeter, and specific resistance of the material of a wire

using a meter bridge and a post office box.

Mechanics:
Kinematics in one and two dimensions (Cartesian coordinates only), projectiles; Uniform

circular motion; Relative velocity.

Newton’s laws of motion; Inertial and uniformly accelerated frames of reference; Static

and dynamic friction; Kinetic and potential energy; Work and power; Conservation of

linear momentum and mechanical energy.

Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic

collisions.

Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Motion

of planets and satellites in circular orbits; Escape velocity.

Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of

inertia of uniform bodies with simple geometrical shapes; Angular momentum; Torque;

Conservation of angular momentum; Dynamics of rigid bodies with fixed axis of rotation;

Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies;

Collision of point masses with rigid bodies.

Linear and angular simple harmonic motions.

Hooke’s law, Young’s modulus.

Pressure in a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension, capillary

rise; Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal velocity,

Streamline flow, equation of continuity, Bernoulli’s theorem and its applications.

Wave motion (plane waves only), longitudinal and transverse waves, superposition of

waves; Progressive and stationary waves; Vibration of strings and air columns;

Resonance; Beats; Speed of sound in gases; Doppler effect (in sound).

Thermal Physics:
Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat conduction

in one dimension; Elementary concepts of convection and radiation; Newton’s law of

cooling; Ideal gas laws; Specific heats (Cv and Cp for monatomic and diatomic gases);

Isothermal and adiabatic processes, bulk modulus of gases; Equivalence of heat and

work; First law of thermodynamics and its applications (only for ideal gases); Blackbody

radiation: absorptive and emissive powers; Kirchhoff’s law; Wien’s displacement law,

Stefan’s law.

Electricity and Magnetism
Coulomb’s law; Electric field and potential; Electrical potential energy of a system of

point charges and of electrical dipoles in a uniform electrostatic field; Electric field lines;

Flux of electric field; Gauss’s law and its application in simple cases, such as, to find

field due to infinitely long straight wire, uniformly charged infinite plane sheet and

uniformly charged thin spherical shell.

Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series

and parallel; Energy stored in a capacitor.

Electric current; Ohm’s law; Series and parallel arrangements of resistances and cells;

Kirchhoff’s laws and simple applications; Heating effect of current.

Biot–Savart’s law and Ampere’s law; Magnetic field near a current-carrying straight

wire, along the axis of a circular coil and inside a long straight solenoid; Force on a

moving charge and on a current-carrying wire in a uniform magnetic field.

Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop;

Moving coil galvanometer, voltmeter, ammeter and their conversions.

Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual inductance; RC,

LR and LC circuits with d.c. and a.c. sources.

Optics:
Rectilinear propagation of light; Reflection and refraction at plane and spherical surfaces;

Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses;

Combinations of mirrors and thin lenses; Magnification.

Wave nature of light: Huygen’s principle, interference limited to Young’s double-slit

experiment.

Modern Physics
Atomic nucleus; α, β and γ radiations; Law of radioactive decay; Decay constant; Halflife

and mean life; Binding energy and its calculation; Fission and fusion processes;

Energy calculation in these processes.

Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and continuous

X-rays, Moseley’s law; de Broglie wavelength of matter waves.

Click on the link for a unit-wise detailed JEE Advanced Physics Syllabus. Physics is challenging for many students. Therefore, the students are advised to put in the extra effort while preparing for this subject. Practice different types of questions and lay a lot of stress on conceptual clarity rather than just rote learning.

JEE Advanced Syllabus and Important Topics for Chemistry

Physical Chemistry Syllabus

General topics:
The concept of atoms and molecules, Mole concept, Dalton’s atomic theory.

Balanced chemical equations, Chemical formulas, Calculations on mole concept involving common oxidation and reduction.

Neutralization and displacement reactions.

Concentration in terms of mole fraction, molality, molarity, and normality.

Liquid and Gaseous States:
The absolute scale of temperature, ideal gas equation, Deviation from ideality, van der Waals equation.

Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature.

Law of partial pressures, Vapour pressure and Diffusion of gases.

Atomic Structure and Chemical Bonding:
Bohr model, the spectrum of a hydrogen atom, quantum numbers, Wave-particle duality, de Broglie hypothesis and Uncertainty principle.

Qualitative quantum mechanical picture of the hydrogen atom, shapes of s, p and d orbitals, Electronic configurations of elements (up to atomic number 36), Aufbau principle, Pauli exclusion principle and Hund’s rule.

Orbital overlap and the covalent bond; Hybridization involving s, p and d orbitals only; Orbital energy diagrams for homonuclear diatomic species; Hydrogen bond.

Polarity in molecules, dipole moment (qualitative aspects only), VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).

Energetics:
First law of Thermodynamics, Internal energy, work, and heat.

Pressure-Volume work, Enthalpy, Hess’s law; Heat of reaction, fusion, and vaporization.

The second law of Thermodynamics, Entropy, Free energy, and criterion of spontaneity.

Chemical Equilibrium:
Law of mass action, Equilibrium constant, and Le Chatelier’s principle (effect of concentration, temperature and pressure).

The significance of Delta G and Delta G0 in chemical equilibrium, Solubility product, common ion effect, pH, and buffer solutions.

Acids and bases (Bronsted and Lewis concepts) and Hydrolysis of salts.

Electrochemistry:
Electrochemical cells and cell reactions; Standard electrode potentials; Nernst equation and its relation to Delta G.

Electrochemical series, emf of galvanic cells, Faraday’s laws of electrolysis.

Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law, and Concentration cells.

Chemical Kinetics:
Rates of chemical reactions, Order of reactions, and Rate constant.

First-order reactions, Temperature dependence of rate constant (Arrhenius equation).

Solid State:
Classification of solids, crystalline state, and seven crystal systems (cell parameters a, b, c, Alpha, Beta, Gamma).

Close-packed structure of solids (cubic), packing in fcc, bcc and hcp lattices.

Nearest neighbours, ionic radii, simple ionic compounds, point defects.

Solutions:
Raoult’s law, Molecular weight determination from lowering of vapour pressure, the elevation of boiling point and depression of freezing point.

Surface chemistry: Elementary concepts of adsorption (excluding adsorption isotherms).

Colloids: types, methods of preparation and general properties; Elementary ideas of emulsions, surfactants, and micelles (only definitions and examples).

Nuclear chemistry:
Radioactivity: isotopes and isobars, Properties of Alpha, Beta, and Gamma rays.

Kinetics of radioactive decay (decay series excluded), carbon dating.

Stability of nuclei with respect to proton-neutron ratio; Brief discussion on fission and fusion reactions.

Inorganic Chemistry Syllabus

Isolation/preparation and properties of the non-metals:
Boron, silicon, nitrogen, phosphorus, oxygen, sulphur, and halogens.

Properties of allotropes of carbon (only diamond and graphite), phosphorus and sulphur.

Preparation and properties of the compounds:
Oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium, potassium, magnesium and calcium.

Boron: diborane, boric acid, borax, and Aluminium: alumina, aluminium chloride and alums.

Carbon: oxides and oxyacid (carbonic acid), and Silicon: silicones, silicates and silicon carbide.

Nitrogen: oxides, oxyacids and ammonia, and Phosphorus: oxides, oxyacids (phosphorus acid phosphoric acid) and phosphine.

Oxygen: ozone and hydrogen peroxide, and Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and sodium thiosulphate.

Halogens: hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder; Xenon fluorides.

Transition elements (3d series):
Definition, general characteristics, oxidation states and their stabilities, colour (excluding the details of electronic transitions) and calculation of spin-only magnetic moment.

Coordination compounds: nomenclature of mononuclear coordination compounds, cis-trans and ionisation isomerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral).

Preparation and properties of the following compounds:
Oxides and chlorides of tin, and lead.

Oxides, chlorides and sulphates of Fe2+, Cu2+ and Zn2+.

Potassium permanganate, potassium dichromate, silver oxide, silver nitrate, silver thiosulphate.

Ores and minerals:
Commonly occurring ores and minerals of iron, copper, tin, lead, magnesium, aluminum, zinc, and silver.

Extractive metallurgy: Chemical principles, and reactions only (industrial details excluded).

Reduction Methods:
Carbon reduction method (iron and tin), Self-reduction method (copper and lead), Electrolytic reduction method (magnesium and aluminium), Cyanide process (silver and gold).

Principles of qualitative analysis: Groups I to V (only Ag+, Hg2+, Cu2+, Pb2+, Bi3+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+); Nitrate, halides (excluding fluoride), sulphate and sulphide.

Organic Chemistry Syllabus

Basic Concepts:
Hybridization of carbon; _ and _-bonds; Shapes of simple organic molecules, Structural and geometrical isomerism, Optical isomerism of compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded).

IUPAC nomenclature of simple organic compounds (only hydrocarbons, monofunctional, and bifunctional compounds), Conformations of ethane and butane (Newman projections), Resonance and hyperconjugation.

Keto-enol tautomerism, Determination of empirical and molecular formulae of simple compounds (only combustion method); Hydrogen bonds: definition and their effects on physical properties of alcohols and carboxylic acids.

Inductive and resonance effects on acidity and basicity of organic acids and bases, Polarity and inductive effects in alkyl halides.

Reactive intermediates produced during homolytic and heterolytic bond cleavage, Formation, structure and stability of carbocations, carbanions and free radicals.

Preparation, properties, and reactions of Alkenes and Alkynes:
Physical properties of alkenes and alkynes (boiling points, density and dipole moments); Acidity of alkynes.

Acid-catalyzed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination), Reactions of alkenes with KMnO4 and ozone.

Reduction of alkenes and alkynes; Preparation of alkenes and alkynes by elimination reactions.

Electrophilic addition reactions of alkenes with X2, HX, HOX, and H2O (X=halogen), Addition reactions of alkynes, and Metal acetylides.

Properties, Preparation, and reactions of Alkanes:
Homologous series, physical properties of alkanes (melting points, boiling points and density).

Combustion and halogenation of alkanes.

Preparation of alkanes by Wurtz reaction and decarboxylation reactions.

Reactions of Phenol and Benzene:
Structure and aromaticity, Electrophilic substitution reactions: halogenation, nitration, sulphonation, Friedel-Crafts alkylation and acylation, Effect of o-, m- and p-directing groups in monosubstituted benzenes.

Phenols: Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation); Reimer-Tiemann reaction, and Kolbe reaction.

Characteristic Reactions:
Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions.

Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl, conversion of alcohols into aldehydes and Ketones.

Ethers: Preparation by Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro reaction; haloform reaction and nucleophilic addition reactions (Grignard addition).

Carboxylic acids: formation of esters, acid chlorides, and amides, ester hydrolysis.

Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, the azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions of diazonium salts; carbylamine reaction.

Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding Benzyne mechanism and Cine substitution).

Carbohydrates:
Classification, mono- and disaccharides (glucose and sucrose), Oxidation, reduction, glycoside formation and hydrolysis of sucrose.

Amino acids and peptides: General structure (only primary structure for peptides) and physical properties.

Properties and uses of some important polymers: Natural rubber, cellulose, nylon, Teflon, and PVC.

Practical Organic Chemistry:
Detection of elements (N, S, halogens).

Detection and identification of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro.

Chemical methods of separation of mono-functional organic compounds from binary mixtures.

Click on the given link to get a detailed and topic-wise JEE Advanced Chemistry Syllabus. For many students, chemistry is the most scoring and easiest in comparison to physics and maths. To excel in this section, practice questions according to their difficulty and solve several JEE question papers which consist of problems from every chapter before the final examination.

Syllabus and Important Topics of JEE Advanced Maths

Algebra:
Complex Numbers Algebra of complex numbers, addition, multiplication, conjugation.

Polar representation, properties of modulus and principal argument.

Triangle inequality, cube roots of unity.

Geometric interpretations.

Quadratic Equations Quadratic equations with real coefficients.

Relations between roots and coefficients.

Formation of quadratic equations with given roots.

Symmetric functions of roots.

Sequence and Series Arithmetic, geometric, and harmonic progressions.

Arithmetic, geometric, and harmonic means.

Sums of finite arithmetic and geometric progressions, infinite geometric series.

Sums of squares and cubes of the first n natural numbers.

Logarithms Logarithms and their properties.
Permutation and Combination Problems on permutations and combinations.
Binomial Theorem Binomial theorem for a positive integral index.

Properties of binomial coefficients.

Matrices and Determinants Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix.

Determinant of a square matrix of order up to three, the inverse of a square matrix of order up to three.

Properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties.

Solutions of simultaneous linear equations in two or three variables.

Probability Addition and multiplication rules of probability, conditional probability.

Bayes Theorem, independence of events.

Computation of probability of events using permutations and combinations.

Trigonometry:
Trigonometric Functions Trigonometric functions, their periodicity, and graphs, addition and subtraction formulae.

Formulae involving multiple and submultiple angles.

The general solution of trigonometric equations.

Inverse Trigonometric Functions Relations between sides and angles of a triangle, sine rule, cosine rule.

Half-angle formula and the area of a triangle.

Inverse trigonometric functions (principal value only).

Vectors:
Properties of Vectors The addition of vectors, scalar multiplication.

Dot and cross products.

Scalar triple products and their geometrical interpretations.

Differential Calculus:
Functions Real-valued functions of a real variable, into, onto and one-to-one functions.

Sum, difference, product, and quotient of two functions.

Composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions.

Even and odd functions, the inverse of a function, continuity of composite functions, intermediate value property of continuous functions.

Limits and Continuity Limit and continuity of a function.

Limit and continuity of the sum, difference, product and quotient of two functions.

L’Hospital rule of evaluation of limits of functions.

Derivatives The derivative of a function, the derivative of the sum, difference, product and quotient of two functions.

Chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions.

Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative.

Tangents and normals, increasing and decreasing functions, maximum and minimum values of a function.

Rolle’s Theorem and Lagrange’s Mean Value Theorem.

Integral calculus:
Integration Integration as the inverse process of differentiation.

Indefinite integrals of standard functions, definite integrals, and their properties.

Fundamental Theorem of Integral Calculus.

Integration by parts, integration by the methods of substitution and partial fractions.

Application of Integration Application of definite integrals to the determination of areas involving simple curves.
Differential Equations Formation of ordinary differential equations.

The solution of homogeneous differential equations, separation of variables method.

Linear first-order differential equations.

Click here for a detailed JEE Advanced Maths Syllabus. Maths is not difficult but the results won’t be favourable if your basics are not clear. The formulas are the backbone of Mathematics, hence, make proper notes and revise them regularly so that you can easily recall without forgetting them during the examination time. Develop good memory skills as well.

Benefits of Reading The JEE Syllabus

Getting a complete overview of the JEE syllabus has several benefits. We will look at them below:

  • Going through the syllabus will help candidates to gain insight into the important topics for JEE Advanced exam, chapters and more.
  • They will also get an idea of the exam pattern, weightage of marks, types of questions, duration of the exam, etc.
  • Students will have more control over their learning.
  • Get information about the course objectives.
  • Details about JEE reference materials.

JEE Study Exercises To Follow

After going through the syllabus students are advised to analyze the JEE Advanced exam pattern and also make use of previous years question papers. These will help them study more productively and be academically strong to face the exams.

JEE Advanced Exam Pattern
JEE Advanced Previous Year Question Papers

JEE Advanced Books To Refer

Chemistry Mathematics Physics
NCERT Class XI and XII books IIT Mathematics by M.L Khanna NCERT Class XI and XII Textbooks
Inorganic Chemistry by JD Lee Higher Algebra by Hall and Knight JEE Physics by DC Pandey
Numerical Chemistry by P. Bahadur Tata McGraw Hill HC Verma Part I and II
Physical Chemistry by Wiley Differential Calculus by A Das Gupta Problems in Physics by S.S Krotov
Organic Chemistry by Morrison and Boyd RD Sharma Class 11 and 12 Physics by Resnick and Halliday
Inorganic Chemistry by OP Tandon Trigonometry by S.L Loney Physics by IE Irodov

Also Read;

Candidates can also check out JEE Advanced resources by visiting the links given below.

Frequently Asked Questions On JEE Advanced Syllabus

Q1

Who sets the syllabus for JEE Advanced?

 IIT Bombay is in charge of conducting the JEE Advanced 2022.

Q2

Are there any changes to JEE Advanced Syllabus for 2022?

There are no changes in the syllabus for 2022. It has remained the same for almost five years now. However, topics are usually different between JEE Main and Advanced.

Q3

The syllabus that should be focused more on – JEE Main or Advanced?

Since there are no major changes or differences between the syllabus of JEE Main and JEE Advanced candidates can focus on JEE Main syllabus first and once they qualify for Advanced, they can prepare accordingly.

Q4

What subjects are considered for JEE Advanced eligibility?

For JEE Advanced the minimum qualifying mark is 75% in class 12. Candidates need to have studied subjects like Physics, Chemistry, Mathematics, and English or Hindi.

For the latest updates on JEE Advanced eligibility, application form, exam pattern, sample papers, important books and more, keep visiting BYJU’s.