Inverse tan is the inverse function of the trigonometric function ‘tangent’. It is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle. Based on this function, the value of tan 1 or arctan 1 or tan 10, etc. can be determined. It is naming convention for all inverse trigonometric functions to use the prefix ‘arc’ and hence inverse tangent is denoted by arctan. Although it is not uncommon to use tan-1, we will use arctan throughout this article.
Inverse Tangent Formula
Addition Formula:
The formula for adding two inverse tangent function is derived from tan addition formula.
In this formula, by putting a = arctan x and b = arctan y, we get
For Integration:
Some of the important formulae for calculating integrals of expressions involving the arctan function are:
∫ arctan (x)dx = {x arctan (x)} – {In (x2+1)/2} + C
∫ arctan (ax)dx = {x arctan (ax)}- {In (a2x2+1)/2a} + C
∫ x arctan (ax)dx = {x2 arctan (ax)/2} – {arctan(ax)/2a2 } – {x / 2a} + C
∫ x2 arctan (ax)dx = {x3 arctan (ax)/3} – {In (a2x2 + 1)/6a3 } – {x2/6a} + C
Calculus of Arctan Function
This section gives the formula to calculate the derivative and integral of the arctan function.
Derivative of tan inverse x
The differentiation of tan inverse x is given below. The derivative of arctan x is denoted by d/dx(arctan(x)) and for complex values of x , the derivative is equal to 1/1+x2 for x ≠ -i, +i.
Therefore, the differentiation of tan inverse x is given by:
\(\begin{array}{l}\frac{d}{dx}tan^{-1}x = \frac{1}{1 + x^2}\end{array} \) |
Integral of inverse tan
For obtaining an expression for the definite integral of the inverse tan function, the derivative is integrated and the value at one point is fixed. The expression is:
Inverse Tan Graph
Relationship Between Inverse Tangent Function and Other Trigonometric Functions
Consider a triangle whose length of adjacent and opposite are 1 and x respectively. Therefore, the length of the hypotenuse is
Sin (arctan(x)) =
Cos (arctan(x)) =
Tan (arctan(x)) = x
Inverse Tangent Properties
The basic properties of the inverse tan function (arctan) are listed below:
Notation: y = arctan (x)
Defined as: x = tan (y)
Domain of the ratio: all real numbers
Range of the principal value in radians: -π/2 < y < π/2
Range of the principal value in degrees: -90° < y < 90°
What is the Value of tan-1 Infinity?
To calculate the value of the tan inverse of infinity(∞), we have to check the trigonometry table. From the table we know, the tangent of angle π/2 or 90° is equal to infinity, i.e.,
tan 90° = ∞ or tan π/2 = ∞
Therefore, tan-1 (∞) = π/2 or tan-1 (∞) = 90°
Solved Examples On Inverse Tan
Example 1:
Prove that
Solution:
Consider
This can also be written as:
Now, LHS =
= RHS
Hence proved.
Example 2:
Show that
Solution:
LHS =
= RHS
Example 3:
Find the value of x, for which
Solution:
Consider, tan 15° = tan(45° – 30°)
= (tan 45° – tan 30°)/(1 – tan 45° tan 30°)
From the given,
⇒ tan-1(1/x) = tan-1(1/2)
⇒ 1/x = 1/2
⇒ x = 2
Therefore, the value of x is 2.
Practice Problems
- Show that \(\begin{array}{l}4 tan ^{-1} \frac{1}{5}-tan ^{-1} \frac{1}{70}+tan ^{-1} \frac{1}{99}=\frac{\pi}{4}\end{array} \)
- If y = tan-1(sec x + tan x), then find dy/dx.
- Find the value of x if tan-1[(x – 1)/(x – 2)] + tan-1[(x + 1)/(x + 2)] = π/4.
Related Links
Inverse Sine | Inverse Cosine |
Learning inverse trigonometric functions and related topics can be fun and easy at BYJU’S – The Learning App. Register today!
Comments