In Linear algebra, the transpose of a matrix is one of the most commonly used methods in matrix transformation. For a given matrix, the transpose of a matrix is obtained by interchanging rows into columns or columns to rows. In this article, we are going to learn the definition of the transpose of a matrix, steps to find the transpose of a matrix, properties and examples with complete explanation.
Table of Contents:
Before learning how to find the transpose of a matrix, first let us learn, what a matrix is?
What is a Matrix?
A matrix is a rectangular array of numbers or functions arranged in a fixed number of rows and columns.
There are many types of matrices. Let us consider a matrix to understand more about them.
The above matrix A is of order 3 × 2. Thus, there are a total of 6 elements.
The horizontal array is known as rows and the vertical array are known as Columns.
Now, let us take another matrix.
The number of rows in matrix A is greater than the number of columns, such a matrix is called a Vertical matrix.
The number of columns in matrix B is greater than the number of rows. Such a matrix is called a Horizontal matrix.
One thing to notice here, if elements of A and B are listed, they are the same in number and each element that is there in A is there in B too. So, is A = B?
Before answering this, we should know how to decide the equality of the matrices.
A matrix P is said to be equal to matrix Q if their orders are the same and each corresponding element of P is equal to that of Q.
That is, if
- m = r and n = s i.e. the orders of the two matrices must be same
- For every value of i and j, \(\begin{array}{l}p_{ij}\end{array} \)=\(\begin{array}{l}q_{ij}\end{array} \).
Transpose of a Matrix Definition
The transpose of a matrix is found by interchanging its rows into columns or columns into rows. The transpose of the matrix is denoted by using the letter “T” in the superscript of the given matrix. For example, if “A” is the given matrix, then the transpose of the matrix is represented by A’ or AT.
The following statement generalizes the matrix transpose:
If
Thus Transpose of a Matrix is defined as “A Matrix which is formed by turning all the rows of a given matrix into columns and vice-versa.”
How to Find the Transpose of a Matrix?
Consider an example, if a matrix is a 2×3 matrix. It means it has 2 rows and 3 columns. While finding the transpose of a matrix, the elements in the first row of the given matrix are written in the first column of the new matrix. Similarly, the elements in the second row of the given matrix are written in the second column of the new matrix. Hence, the order of the new matrix becomes 3×2, as it has 3 rows and 2 columns.
Let’s Work Out-
Example- Find the transpose of the given matrix
Solution- Given a matrix of the order 4×3. The transpose of a matrix is given by interchanging rows and columns.
|
Properties of Transpose of a Matrix
To understand the properties of the matrix transpose, we will take two matrices A and B which have equal order. Some properties of the transpose of a matrix are given below:
(i) Transpose of the Transpose Matrix
If we take the transpose of transpose matrix, the matrix obtained is equal to the original matrix. Hence, for a matrix A,
What basically happens, is that any element of A, i.e.
Example: If \(\begin{array}{l}N = \begin{bmatrix} 22 & -21 & -99 \\ 85 & 31 & -2\sqrt{3} \\ 7 & -12 & 57 \end{bmatrix}\end{array} \) ,
Then Now, = |
(ii) Addition Property of Transpose
Transpose of an addition of two matrices A and B obtained will be exactly equal to the sum of transpose of individual matrix A and B.
This means,
Example- If \(\begin{array}{l} P\end{array} \) = \(\begin{array}{l} \begin{bmatrix} 2 & -3 & 8 \\ 21 & 6 & -6 \\ 4 & -33 & 19 \end{bmatrix} \end{array} \)
and
So, we can observe that |
(iii) Multiplication by Constant
If a matrix is multiplied by a constant and its transpose is taken, then the matrix obtained is equal to transpose of original matrix multiplied by that constant. That is,
Example- If \(\begin{array}{l}P\end{array} \) = \(\begin{array}{l} \begin{bmatrix} 2 & 8 & 9 \\ 11 & -15 & -13 \end{bmatrix}_{2×3} \end{array} \) and k is a constant, then \(\begin{array}{l}(kP)'\end{array} \) =
We can observe that |
(iv) Multiplication Property of Transpose
Transpose of the product of two matrices is equal to the product of transpose of the two matrices in reverse order. That is
Example: \(\begin{array}{l}A \end{array} \) = \(\begin{array}{l} \begin{bmatrix} 9 & 8 \\ 2 & -3 \end{bmatrix} \end{array} \) and \(\begin{array}{l} B \end{array} \) = \(\begin{array}{l} \begin{bmatrix} 4 & 2 \\ 1 & 0 \end{bmatrix} \end{array} \)
Let us find
= ∴
We can clearly observe from here that (AB)’≠A’B’. |
Those were properties of matrix transpose which are used to prove several theorems related to matrices.
Transpose of a Matrix Video Lesson
Transpose of a Matrix
Transpose of a Matrix Examples
Go through the following problems to understand how to find the transpose of a matrix.
Example 1:
If matrix
Solution:
Given:
Matrix
On interchanging the rows and columns of the given matrix, the transpose of matrix A is given as:
Therefore, the transpose of matrix A,
Example 2:
Find the transpose for the given 2×2 matrix,
Solution:
Given 2×2 matrix,
Hence, the transpose of the given 2×2 matrix is:
To learn other concepts related to matrices, download BYJU’S-The Learning App and discover the fun in learning.
Related Links | |
Adjacency Matrix | Diagonal matrix |
Identity Matrix | Inverse Matrix |
Frequently Asked Questions
What is the transpose of a matrix?
The transpose of a matrix can be defined as an operator which can switch the rows and column indices of a matrix i.e. it flips a matrix over its diagonal.
How to calculate the transpose of a Matrix?
To calculate the transpose of a matrix, simply interchange the rows and columns of the matrix i.e. write the elements of the rows as columns and write the elements of a column as rows.
What is the Addition Property of Transpose?
The addition property of transpose is that the sum of two transpose matrices will be equal to the sum of the transpose of individual matrices. So,
- (A+B)′ = A′+B′
What is the Multiplication Property of Transpose?
The multiplication property of transpose is that the transpose of a product of two matrices will be equal to the product of the transpose of individual matrices in reverse order. So,
- (A×B)′ = B′ × A′
Comments